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Abstract 

The present paper outlines the stress-strain behaviour of aluminum foams. To describe the 
response of the foam under arbitrary stress states, an elasto-plastic theory is used within the 
framework of the Theory of Porous Media (TPM). The goal of this paper is the identification of 
the parameters of the elasto-plastic model based on the results of uniaxial and multiaxial tests. 
For the examination of the elastic properties, uniaxial tests with unload-reload cycles are per
formed in order to isolate the reversible and hence the elastic part of the deformation. In contrast 
to the von Mises-like yield behaviour of pure aluminium, yielding of aluminium foam appears 
under isotropic compression as well as isotropic tension. This leads to a closed shape of the 
yield surface in the principal stress space. The triaxial compression tests and isotropic com
pression tests are carried out on cylindrical foam specimens to exhibit the dependence of the 
yielding behaviour on the hydrostatic stress state of the foam structure. Furthermore, biax
ial tests (plane stress) are realized in order to obtain information about the shape of the yield 
curve in the deviatoric plane. The results of the uniaxial, triaxial and biaxial tests are the basis 
for an optimization process, whereby the yield criterion is adapted to the experimentally ob
served yield points by a least-squares objective function. The single-surface yield function used 
within the elasto-plastic model allows the decomposition in a hydrostatic and in a deviatoric 
part. Hence, a separate consideration of these two parts concerning the parameter identifica
tion is possible. A general requirement in the theory of plasticity is the constraint of convexity 
concerning the yield function. This leads to additional inequality constraints within the op
timization process and hence to a constraint minimization problem. Therefore, the so called 
SQP-algorithm, which is based on a quadratic subproblem, is applied for the solution of the 
identification problem. 

1 Material specification and geometry of the specimens 

The aluminium foam is manufactured by Hydro Aluminium a.s, R&D Materials Technology. 
The foam consists of the alloy A1Si7Mg, with density in the range of 0.28 g/cm3 < p < 0.32 
g/cm3 . This density corresponds to a porosity within the limits of 0.882 < nF < 0.896. The pore 
structure of the foam is approximately regular, apart from some anisotropic effects as a result 
of the foam growth direction. Nevertheless, pretests have shown, that the material behaviour of 
the foam is approximately isotropic. 
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The samples are carefully prepared by sawing and, in case of the triaxial specimens by final 
turning. During this process damage of the pore structure at the surface of the samples should 
be avoided. 

The geometry of the specimens and the definition of the applied load is shown in Figure 1. 
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Figure 1: Sample geometry and definition of the applied loads for (a) triaxial testing and (b) 
biaxial testing 

2 Elastic properties 

Basis of the elasto-plastic theory is the assumption that the total deformation consists of the sum 
of a recoverable elastic part and an irreversible plastic part. Isolation of the elastic part from the 
total deformation within uniaxial compression tests is performed by unload-reload stress path, 
where approximately only recoverable strains occur. The slope of an unload-reload cycle in a 
stress-strain plot yields the parameter value for the Young's modulus Eur• see Figure 2. Thereby, 
a Hooke-type linear elasticity law is assumed. 
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Figure 2: Determination of the Young's modulus Eur at the slope of an unload-reload cycle 

It is very common to evaluate an initial Young's modulus Ei as the slope of the linear strain 
curve before primary fracture occurs. In this range irreversible plastic strain portions are defi
nitely included for the aluminium foam (Figure 2) and therefore, it is not suitable to determine 
elasticity constants in this way. In Figure 3 values of Ei evaluated for four different tests are 
plotted. 

In addition, determination of the Young's modulus is also carried out by acoustical methods [6], 
where measurement by resonance methods employing longitudinal and bending waves allows 
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Figure 3: Values for the Young's modulus of aluminium foam determined by three different 
methods 

to draw conclusions regarding to the elastic properties. Figure 3 shows results for values of the 
Young's modulus of aluminium foam evaluated by the above mentioned three different methods. 
For the mechanical tests, the values of a 1 give the axial stress for which the unload-reload cycles 
are applied. Similar symbols belong to the same test. It is remarkable that the value forE carried 
out by acoustical methods is considerable higher than those obtained by mechanical methods. 
Experimental determination of Poisson's ratio v = -c3/ c1 is very difficult. Within the unload
reload cycles in the uniaxial compression tests, no significant deformation in the lateral direction 
c3 could be observed. Therefore, v = 0 is assumed. 

3 Triaxial tests 

Triaxial compression tests as well as isotropic c?mpression tests are carried out on cylindrical 
foam specimens to exhibit the dependence of the yielding behaviour on the hydrostatic stress 
state of the foam structure. 

3.1 Experimental set-up 

Within the triaxial cell, the lateral load on the axisymmetric specimen is applied by the use of 
oil as a non-conductive medium (see Figure 4). Oil pressure is set by a hydraulic control unit. 
The load in axial direction is applied by a displacement driven press. Thereby, the axial strain 
is measured with a linear variable displacement transducer (LVDT) and the radial strain by a 
collar of two spring steel belts equiped with strain gages [7] (see Figure 4). 

3.2 Results 

A typical result of a triaxial compression test, for a constant lateral load of a3 = -2.0 MN/m2, 

is plotted in Figure 5. At a specific point, a substantial drop of stress occurs due to fracture of 
complete foam-cell layers. 
Compression tests for different values of a 3 are performed as well as isotropic compression 
tests. The results of these tests give the input data for the adaption of the yield criterion in the 
hydrostatic plane. 
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Figure 4: Diagrammatic layout of the hydraulic triaxial apparatus with a picture of the final 
set-up 
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Figure 5: Result of a triaxial compression test with a constant lateral load of 0"3 = -2.0 MN/m2 

4 Biaxial tests 

Biaxial tests (plane stress conditions) are performed in order to obtain information about the 
shape of the yield curve in the deviatoric plane. For these tests, a testing device is developed 
to realize large deformations in compliance with homogeneous deformation modes. At the 
interface between the specimen and the testing device, teflon layers are applied in order to 
reduce the friction during the deformation process (see Figure 6). The external load is applied 
under displacement control. 

5 Modelling of plastic deformations 

5.1 Yield criterion 

As mentioned above, the well-known von Mises-yield criterion is not suitable for aluminium 
foam. Hence, a single-surface yield function is introduced with a closed shape of the yield 
contour in the principle stress space and a non-circular shape with respect to the deviatoric 
plane [2], see Figure 7. 
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Figure 6: Experimental set-up of the biaxial test: layout and photography 
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Figure 7: Geometrical representation of the yield function in the principle stress space 

In the mathematical formulation of the yield function 

F (T' qh' qd) = vr JI D + ~ a p + 82 14 + 11 I + d 2 
- K, = 0 ' 

f(T, qd) = (1 + -yillD /(JID)3/2)m ' 
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(1) 

the invariants I = T . I, liD = ~ TD . TD and m D = ~ TD . (TD TD) of the stress tensor 
T characterize the stress state in (1 ). The additional index ( .. ) D specifies the deviatoric part 
of the respective object; the symbol "·" denotes the scalar product. The function f(T, qd) 

with the deviatoric parameter vector qd = ('y, m f specifies the shape of the yield-curve in 
the deviatoric plane (cross-section perpendicular to the hydrostatic axis I, see Figure 7), the 
hydrostatic parameter vector qh = (a, /1, 8, €, K,)T governs the shape of the yield curve in the 
hydrostatic plane (cross-section parallel to the hydrostatic axis I). 
Reformulation of (1) using polar coordinates with the so-called Reuj3 variables 

r::;;n 1 . (V27 mv ) r = Y~ll~ and e = -arcsm -- -D I 
3 2 (JI )3 2 

(2) 
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leads to 

r(e, I) 

(3) 

Therein, T(e, I) is the yield radius given as the product of two independent functions, Th(I) and 
rd (e), where Th (I) represents the hydrostatic shape function while rd (e) describes the shape 
of the yield criterion in the deviatoric plane (see Figure 7). 

For more detailed information regarding to this section, it is referred to [ 1, 2, 4]. 

5.2 Parameter identification 

In the uniaxial, triaxial and biaxial tests external load is increased up to those stress points where 
significant fracture occurs. These stress points are then assumed to be located on the yield or 
fracture surface in the principle stress space. To add information with respect to the tension 
range, uniaxial tensile tests, performed by partners of the EU-project METEOR, are incorpo
rated in the parameter identification process (Figure 8). 

The goal of the following optimization process is to minimize the distances of the experimen
tally observed yield points to the yield function (3) by variation ofthe parameter sets qh and qd. 

Therefore, the identification procedure is based on the non-linear optimization problem 

<I>( q) ~ IIRm( q) 11§ -+ min, 

Tm- r(Im, em, q) 

qh + qd. 

(4) 

Here, m specifies the number of the experimental observations of the yield points concerning 
the yield radius T m• the corresponding hydrostatic pressure Im and the Lode angle em. The 
least-squares functional (4) is a function of the vector q E Rn which contains n = 7 material 
parameters involved in the yield criterion (3). 

A general requirement in the theory of plasticity is the constraint of convexity concerning the 
yield function (principle of maximum dissipation [5]). This leads to additional inequality con
straints governed by 

82rh(I) 
gh(qh) = -ai2:::; 0 

for the hydrostatic part of the yield function and by 

(5) 

(6) 

for the deviatoric part [1]. Thus, the optimization process is concerned by a constraint mini
mization problem. Thereby, the considered inequality constraints (5) and (6) represent conti
nous restrictions respective to I and e. Discretization of these continous constraints to a finite 
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Figure 8: Geometrical interpretation of the distances between experimental points and the yield 
function which have to be minimized by the least-squares objective function (4) 

number of inequality equations within the bounds of the yield function r(8, I) is necessary. The 
resulting constraints define the space of the admissible parameters. This leads to the problem 

<I> ( q) ---+ min 
qEf2 

(7) 

where ih and id denote the number of discrete inequality constraints. The constraint mini
mization problem (7) can be solved by the introduction of the Lagrange function £(q, A) = 

<I>(q) +AT g with g = gh + gd. By the consideration of the Karush-Kuhn-Tucker conditions 
8£f8q = 0, A 2:: 0, g :::; 0 and AT g = 0, a quadratic subproblem with linear constraints may 
be generated. On the basis of this quadratic subproblem the so-called SQP-algorithm is applied. 
Concerning the theory of SQP (Sequential Quadratic Programming) and nonlinear program
ming in general we refer to [8, 9]. 
In the present work we use the SQP-code "donlp2"1 supplied by Prof. Spellucci (TU Darmstadt, 
Germany). 

Results of the identification process for the parameters of the yield criterion are summarized in 
Table 1. 

Parameter m[-] 

Value 0.61 

Table 1: Parameter values q of the yield criterion calculated by the minimization problem (7) 

1 donlp2-programme and users guide are available from www.netlib.org/opt 
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6 Conclusions 

In the present work, the evaluation of a mechanical correct Young's modulus within unload

reload loops in uniaxial tests is demonstrated. Furthermore, the experimental set-up for triaxial 

tests as well as for biaxial tests is shown. By the results of these multiaxial tests, the parameter 
identification for the three-dimensional yield surface in the principle stress space is applied. The 
results of the parameter evaluation concerning the reversible (elastic) and irreversible (plastic) 

material behaviour may be used for the elasto-plastic model described in [1, 3, 4]. 
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